A complete list of references for the Thomopoulos Lab can be found on the PubMed website.

  1. Thomopoulos, S., G.M. Genin, and V. Birman, eds. Structural Interfaces and Attachments in Biology. 2013, Springer: New York.
  2. Lu, H.H. and S. Thomopoulos, Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng, 2013. 15: p. 201-26.
  3. Galatz, L.M., C.M. Ball, S.A. Teefey, W.D. Middleton, and K. Yamaguchi, The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am, 2004. 86-A(2): p. 219-24.
  4. Harryman, D.T., 2nd, L.A. Mack, K.Y. Wang, S.E. Jackins, M.L. Richardson, and F.A. Matsen, 3rd, Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. Journal of Bone & Joint Surgery, 1991. 73(7): p. 982-9.
  5. Thomopoulos, S., G.R. Williams, J.A. Gimbel, M. Favata, and L.J. Soslowsky, Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. Journal of Orthopaedic Research, 2003. 21(3): p. 413-9.
  6. Thomopoulos, S., J.P. Marquez, B. Weinberger, V. Birman, and G.M. Genin, Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech, 2006. 39(10): p. 1842-51.
  7. Genin, G.M., A. Kent, V. Birman, B. Wopenka, J.D. Pasteris, P.J. Marquez, and S. Thomopoulos, Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J, 2009. 97(4): p. 976-85.
  8. Liu, Y., V. Birman, C. Chen, S. Thomopoulos, and G.M. Genin, Mechanisms of bimaterial attachment at the interface of tendon to bone. Journal of Engineering Materials and Technology, 2011. 133(011006): p. 281-8.
  9. Liu, Y.X., S. Thomopoulos, V. Birman, J.S. Li, and G.M. Genin, Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mechanics of Materials, 2012. 44: p. 83-92.
  10. Schwartz, A.G., J.D. Pasteris, G.M. Genin, T.L. Daulton, and S. Thomopoulos, Mineral distributions at the developing tendon enthesis. PLoS One, 2012. 7(11): p. e48630.
  11. Alexander, B., T.L. Daulton, G.M. Genin, J. Lipner, J.D. Pasteris, B. Wopenka, and S. Thomopoulos, The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface, 2012. 9(73): p. 1774-86.
  12. Liu, Y., S. Thomopoulos, C. Chen, V. Birman, M.J. Buehler, and G.M. Genin, Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. J R Soc Interface, 2014. 11(92): p. 20130835.
  13. Hu, Y., V. Birman, A. Demyier-Black, A.G. Schwartz, S. Thomopoulos, and G.M. Genin, Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone. Biophys J, 2015. 108(2): p. 431-7.
  14. Wopenka, B., A. Kent, J.D. Pasteris, Y. Yoon, and S. Thomopoulos, The Tendon-to-Bone Transition of the Rotator Cuff: A Preliminary Raman Spectroscopic Study Documenting the Gradual Mineralization Across the Insertion in Rat Tissue Samples. Appl Spectrosc, 2008. 62(12): p. 1285-94.
  15. Deymier-Black, A., J. Pasteris, G. Genin, and S. Thomopoulos, Allometry of the tendon enthesis: mechanisms of load transfer between tendon and bone. Journal of Biomechanical Engineering, 2015. In Press.
  16. Schwartz, A.G., J.H. Lipner, J.D. Pasteris, G.M. Genin, and S. Thomopoulos, Muscle loading is necessary for the formation of a functional tendon enthesis. Bone, 2013. 55(1): p. 44-51.
  17. Schwartz, A.G., F. Long, and S. Thomopoulos, Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development, 2014. 142(1): p. 196-206.
  18. Thomopoulos, S., H.M. Kim, S.Y. Rothermich, C. Biederstadt, R. Das, and L.M. Galatz, Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res, 2007. 25(9): p. 1154-63.
  19. Kim, H.M., L.M. Galatz, N. Patel, R. Das, and S. Thomopoulos, Recovery potential after postnatal shoulder paralysis. An animal model of neonatal brachial plexus palsy. J Bone Joint Surg Am, 2009. 91(4): p. 879-91.
  20. Kim, H.M., L.M. Galatz, R. Das, N. Patel, and S. Thomopoulos, Musculoskeletal deformities secondary to neurotomy of the superior trunk of the brachial plexus in neonatal mice. J Orthop Res, 2010. 28(10): p. 1391-8.
  21. Tatara, A.M., J.H. Lipner, R. Das, H.M. Kim, N. Patel, E. Ntouvali, M.J. Silva, and S. Thomopoulos, The role of muscle loading on bone (Re)modeling at the developing enthesis. PLoS One, 2014. 9(5): p. e97375.
  22. Potter, R., N. Havlioglu, and S. Thomopoulos, The developing shoulder has a limited capacity to recover after a short duration of neonatal paralysis. J Biomech, 2014. 47(10): p. 2314-20.
  23. Liu, Y., A.G. Schwartz, V. Birman, S. Thomopoulos, and G.M. Genin, Stress amplification during development of the tendon-to-bone attachment. Biomech Model Mechanobiol, 2014. 13(5): p. 973-83.
  24. Zelzer, E., E. Blitz, M.L. Killian, and S. Thomopoulos, Tendon-to-bone attachment: from development to maturity. Birth Defects Res C Embryo Today, 2014. 102(1): p. 101-12.
  25. Li, X., J. Xie, J. Lipner, X. Yuan, S. Thomopoulos, and Y. Xia, Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett, 2009. 9(7): p. 2763-8.
  26. Liu, W., Y.C. Yeh, J. Lipner, J. Xie, H.W. Sung, S. Thomopoulos, and Y. Xia, Enhancing the stiffness of electrospun nanofiber scaffolds with a controlled surface coating and mineralization. Langmuir : the ACS journal of surfaces and colloids, 2011. 27(15): p. 9088-93.
  27. Liu, W., S. Thomopoulos, and Y. Xia, Electrospun nanofibers for regenerative medicine. Advanced Healthcare Materials, 2012. 1(1): p. 10-25.
  28. Liu, W., Y. Zhang, S. Thomopoulos, and Y. Xia, Generation of controllable gradients in cell density. Angew Chem Int Ed Engl, 2013. 52(1): p. 429-32.
  29. Liu, W., J. Lipner, J. Xie, C.N. Manning, S. Thomopoulos, and Y. Xia, Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces, 2014. 6(4): p. 2842-9.
  30. Lipner, J., W. Liu, Y. Liu, J. Boyle, G.M. Genin, Y. Xia, and S. Thomopoulos, The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair. J Mech Behav Biomed Mater, 2014. 40: p. 59-68.
  31. Xie, J., X. Li, J. Lipner, C.N. Manning, A.G. Schwartz, S. Thomopoulos, and Y. Xia, "Aligned-to-random" nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale, 2010. 2(6): p. 923-6.
  32. Liu, W., J. Lipner, C.H. Moran, L. Feng, X. Li, S. Thomopoulos, and Y. Xia, Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment. Adv Mater, 2015. 27(16): p. 2583-8.
  33. Shen, H., R.H. Gelberman, M.J. Silva, S.E. Sakiyama-Elbert, and S. Thomopoulos, BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One, 2013. 8(10): p. e77613.
  34. Manning, C.N., A.G. Schwartz, W. Liu, J. Xie, N. Havlioglu, S.E. Sakiyama-Elbert, M.J. Silva, Y. Xia, R.H. Gelberman, and S. Thomopoulos, Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair. Acta biomaterialia, 2013. 9(6): p. 6905-14.
  35. Martin, P., Wound healing--aiming for perfect skin regeneration. Science, 1997. 276(5309): p. 75-81.
  36. Ballas, C.B. and J.M. Davidson, Delayed wound healing in aged rats is associated with increased collagen gel remodeling and contraction by skin fibroblasts, not with differences in apoptotic or myofibroblast cell populations. Wound Repair Regeneration, 2001. 9(3): p. 223-37.
  37. Ferguson, M.W. and S. O'Kane, Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci, 2004. 359(1445): p. 839-50.
  38. Beredjiklian, P.K., M. Favata, J.S. Cartmell, C.L. Flanagan, T.M. Crombleholme, and L.J. Soslowsky, Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng, 2003. 31(10): p. 1143-52.
  39. Ansorge, H.L., S. Adams, A.F. Jawad, D.E. Birk, and L.J. Soslowsky, Mechanical property changes during neonatal development and healing using a multiple regression model. J Biomech, 2012. 45(7): p. 1288-92.
  40. Ansorge, H.L., J.E. Hsu, L. Edelstein, S. Adams, D.E. Birk, and L.J. Soslowsky, Recapitulation of the Achilles tendon mechanical properties during neonatal development: a study of differential healing during two stages of development in a mouse model. J Orthop Res, 2012. 30(3): p. 448-56.
  41. Thomopoulos, S., G. Hattersley, V. Rosen, M. Mertens, L. Galatz, G.R. Williams, and L.J. Soslowsky, The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. Journal of Orthopaedic Research, 2002. 20(3): p. 454-63.
  42. Thomopoulos, S., G.R. Williams, and L.J. Soslowsky, Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. Journal of Biomechanical Engineering, 2003. 125(1): p. 106-13.
  43. Galatz, L.M., S.Y. Rothermich, M. Zaegel, M.J. Silva, N. Havlioglu, and S. Thomopoulos, Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J Orthop Res, 2005. 23(6): p. 1441-7.
  44. Galatz, L.M., L.J. Sandell, S.Y. Rothermich, R. Das, A. Mastny, N. Havlioglu, M.J. Silva, and S. Thomopoulos, Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res, 2006. 24(3): p. 541-50.
  45. Galatz, L.M., N. Charlton, R. Das, H.M. Kim, N. Havlioglu, and S. Thomopoulos, Complete removal of load is detrimental to rotator cuff healing. Journal of Shoulder and Elbow Surgery, 2009. 18(5): p. 669-675.
  46. Kim, H.M., L.M. Galatz, R. Das, N. Havlioglu, S.Y. Rothermich, and S. Thomopoulos, The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res, 2011. Epub.
  47. Manning, C.N., H.M. Kim, S. Sakiyama-Elbert, L.M. Galatz, N. Havlioglu, and S. Thomopoulos, Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res, 2011.
  48. Killian, M.L., L. Cavinatto, L.M. Galatz, and S. Thomopoulos, The role of mechanobiology in tendon healing. J Shoulder Elbow Surg, 2012. 21(2): p. 228-37.
  49. Kim, H.M., L.M. Galatz, C. Lim, N. Havlioglu, and S. Thomopoulos, The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elbow Surg, 2012. 21(7): p. 847-58.
  50. Killian, M.L., C.T. Lim, S. Thomopoulos, N. Charlton, H.M. Kim, and L.M. Galatz, The effect of unloading on gene expression of healthy and injured rotator cuffs. J Orthop Res, 2013. 31(8): p. 1240-8.
  51. Killian, M.L., L. Cavinatto, S.A. Shah, E.J. Sato, S.R. Ward, N. Havlioglu, L.M. Galatz, and S. Thomopoulos, The effects of chronic unloading and gap formation on tendon-to-bone healing in a rat model of massive rotator cuff tears. J Orthop Res, 2014. 32(3): p. 439-47.
  52. Silva, M.J., S. Thomopoulos, N. Kusano, M.A. Zaegel, F.L. Harwood, H. Matsuzaki, N. Havlioglu, T.T. Dovan, D. Amiel, and R.H. Gelberman, Early healing of flexor tendon insertion site injuries: Tunnel repair is mechanically and histologically inferior to surface repair in a canine model. J Orthop Res, 2006. 24(5): p. 990-1000.
  53. Gimbel, J.A., J.P. Van Kleunen, G.R. Williams, S. Thomopoulos, and L.J. Soslowsky, Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J Biomech Eng, 2007. 129(3): p. 400-4.
  54. Thomopoulos, S., E. Zampiakis, R. Das, M.J. Silva, and R.H. Gelberman, The effect of muscle loading on flexor tendon-to-bone healing in a canine model. J Orthop Res, 2008. 26(12): p. 1611-7.
  55. Thomopoulos, S., H.M. Kim, M.J. Silva, E. Ntouvali, C.N. Manning, R. Potter, H. Seeherman, and R.H. Gelberman, Effect of bone morphogenetic protein 2 on tendon-to-bone healing in a canine flexor tendon model. J Orthop Res, 2012. 30(11): p. 1702-9.